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Abstract
The ability to build and reason about models
of the world is essential for situated language
understanding. But evaluating world modeling
capabilities in modern AI systems—especially
those based on language models—has proven
challenging, in large part because of the diffi-
culty of disentangling conceptual knowledge
about the world from knowledge of surface
co-occurrence statistics. This paper presents
Elements of World Knowledge (EWOK), a
framework for evaluating language models’
understanding of the conceptual knowledge
underlying world modeling. EWOK targets
specific concepts from multiple knowledge
domains known to be important for world
modeling in humans, from social interactions
(help, deceive) to spatial relations (left, right).
Objects, agents, and locations in the items can
be flexibly filled in, enabling easy generation
of multiple controlled datasets. We then intro-
duce EWOK-CORE-1.0, a dataset of 4,374 items
covering 11 world knowledge domains. We
evaluate 20 open-weights large language mod-
els (1.3B–70B parameters) and compare them
with human performance. All tested models
perform worse than humans, with results vary-
ing drastically across domains. Performance
on social interactions and social properties
was highest and performance on physical re-
lations and spatial relations was lowest. Over-
all, this dataset highlights simple cases where
even large models struggle and presents rich
avenues for targeted research on LLM world
modeling capabilities.

∗authors contributed equally.

1 Introduction

Large language models (LLMs) acquire a sub-
stantial amount of knowledge from their training
data (Bender and Koller, 2020; Grand et al., 2022;
Pavlick, 2022). This knowledge comprises both
knowledge about language (e.g., word mean-
ings and rules of syntax) and knowledge about
the world (e.g., social conventions and physi-
cal properties of objects). Contemporary LLMs
demonstrate substantial knowledge of language
(Mahowald et al., 2024), as evidenced by the flu-
ency of the text that they generate. But how robust
is their understanding of the basic social, physical,
and relational concepts that are foundational to
our everyday experience?

In this paper, we present Elements of World
Knowledge (EWOK),1 a flexible framework for
evaluating world modeling in LLMs (Figure 1).
The EWOK framework consists of: (a) several
domains that constitute the foundation for basic
human world knowledge and are processed by
dedicated cognitive and neural systems; (b) a set
of concepts within each domain; (c) a set of tem-
plates (and modular components to procedurally
generate these templates) that test knowledge of
specific concepts by contrasting plausible and im-
plausible context–target combinations; (d) a set
of fillers to populate the templates, such that each

1Data and associated code are available at: https://
ewok-core.github.io/.
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Figure 1: EWOK design, illustrated with examples from social interactions & spatial relations. Each domain
contains a set of concepts, contexts, and targets. These combine to form many templates, which specify minimal
pairs of contexts (C) and targets (T ), such that T1 matches C1 but not C2, and T2 matches C2 but not C1. Each
template can be combined with fillers to generate an even larger collection of items.

template can be used multiple times; (e) a pipe-
line to generate a specific set of items (a dataset)
based on these source materials; and (f) an evalu-
ation procedure that measures language models’
ability to distinguish plausible and implausible
items.

Why Elements? Our framework targets spe-
cific cognitive concepts (or concept pairs, such
as left/right). Concept knowledge is not limited
to memorized definitions, but can be used pro-
ductively across a wide range of scenarios. Thus
concepts (not isolated sentences or facts) are the
primary focus of the EWOK framework. This ap-
proach stands in contrast to many NLP datasets,
which often include naturalistic, lengthy stimuli
that draw on multiple unspecified concepts. Al-
though naturalistic tasks are useful for evaluating
model performance in real-life settings, individual
item complexity and lack of controls can make it
difficult to assess why a model fails. For instance,
LLMs exhibit mixed performance on theory of
mind tasks, which has led to disagreements about
whether LLMs fail at inferring mental states or
auxiliary cognitive abilities, such as knowing what
it means for a box to be ‘‘transparent’’ (Kosinski,
2024; Ullman, 2023). Our framework mitigates

this problem by explicitly linking individual items
with the specific concepts that they test.

Why Cognition-inspired? World knowledge is
a notoriously fuzzy capability; which knowledge
domains should one focus on? Dataset design
in NLP is often centered around data availabil-
ity, with examples sourced from video captions,
Wikipedia articles, or social media logs. In con-
trast, here, we systematically select a range of
knowledge domains that have been shown to
recruit dedicated cognitive and/or neural machin-
ery in humans, such as knowledge of intuitive
physics (McCloskey, 1983; Battaglia et al., 2013),
knowledge of physical and spatial relations (Hafri
and Firestone, 2021), intuitive number sense
(Dehaene, 2011), social reasoning (Carlson et al.,
2013; Thomas, 2024), and reasoning about agents
that involves both physical and social knowl-
edge (Liu et al., 2024). These knowledge domains
are not specific to language (Jackendoff, 2002);
in fact, many are present in preverbal infants
(Spelke and Kinzler, 2007). At the same time,
traces of these signals are deeply embedded in
our daily communicated language. Text itself thus
contains rich information that reflects grounded
world knowledge (Roads and Love, 2020; Abdou
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et al., 2021; Patel and Pavlick, 2021), and it may
be reasonable to predict that LLMs would acquire
this domain-specific knowledge from text alone.

Why Plausibility? Concept understanding is
often fuzzy. Thus, deciding whether a factual state-
ment is true or false in isolation is often ill-defined.
Instead, we use combinations of plausible vs. im-
plausible context–target pairs. In EWOK, a model
needs to determine which scenarios make more
sense (more plausible). Having an accurate world
model would enable a model to consistently dis-
tinguish plausible and implausible scenarios no
matter how they are worded.

Why Minimal Pairs (of Pairs)? Both contexts
and targets in EWOK have a minimal-pairs de-
sign, such that a specific targeted change to a
sentence (e.g., left → right) yields an opposite
effect (e.g., plausible → implausible). This ap-
proach can help identify specific manipulations
that LLMs are and are not sensitive to, with the
goal of targeted diagnostics. Such controlled ma-
nipulations are also particularly well-suited for
mechanistic interpretability research, which may
seek to explain the circuits through which models
deploy world knowledge in context.

Why Context–target Combinations? LLMs
have a remarkable capacity for memorization,
such that many plausible and implausible sen-
tences can be distinguished solely based on their
presence in the training data (e.g., The fox chased
the rabbit is more common than The rabbit chased
the fox). In contrast, our framework tests LLMs’
ability to evaluate contextual plausibility, such
that the same exact target (The piano is left of
Ali) is either plausible or implausible depending
on the context (see Figure 1 right). Establishing
this control is critical for isolating contextually-
sensitive world knowledge from heuristic knowl-
edge associated with surface forms.

Our paper is structured as follows. In Section 2,
we review prior research related to the topics ex-
plored in this work. In Section 3, we describe
the core components of the EWOK framework.
In Section 4, we describe our evaluation strat-
egy. In Section 5, we show LLM performance
on EWOK-CORE-1.0, a dataset generated via the
EWOK framework. In Section 6, we discuss our
results and future prospects for this line of work.
Finally, in Section 7, we discuss dataset release
considerations.

2 Related Work

The capabilities we evaluate are closely related
to the notion of commonsense knowledge, an
area that has numerous text-based benchmarks
(e.g., Levesque et al., 2012; Sakaguchi et al.,
2021; Zellers et al., 2019), including targeted
evaluations of physical (Bisk et al., 2020) and
social commonsense (Sap et al., 2019). LLMs
often struggle on such commonsense benchmarks,
likely due to the reporting bias in their training
data (Shwartz and Choi, 2020): Conversations and
texts typically do not include commonly observed
or obvious information (Gordon and Van Durme,
2013). Thus, although our items target basic world
knowledge and are not designed to be challenging,
it is possible that LLMs could still struggle with
them due to the reporting bias.

One specific version of reporting bias affects
perceptually grounded knowledge. Co-occurrence
information that is easily available through percep-
tion (e.g., the fact that bananas are typically yellow
or wheels are typically round) is often underrep-
resented in language corpora. This bias has led an
earlier generation of language models to under-
perform on physically and perceptually grounded
world knowledge tasks (Lucy and Gauthier, 2017;
Utsumi, 2020) and exhibit representational dif-
ferences in physical features that are more/less
talked about (Abdou et al., 2021; Lewis et al.,
2019). That said, in spite of such biases, mod-
els trained on text do learn a substantial amount
of distributional information from perceptual do-
mains (Roads and Love, 2020; Abdou et al., 2021;
Sorscher et al., 2022), meaning that much of
the perceptual world knowledge can be acquired
without grounding. Overall, we expect LLMs to
perform above-chance on world knowledge do-
mains that are perceptually grounded (such as
physical relations or material properties), although
they might be more challenging than, e.g., social
domains.

Our evaluation is also related to works on
natural language inference and entailment. The
recognizing textual entailment (RTE) task (Dagan
et al., 2010) poses two sentences to a system (a
text expression T and hypothesis H) and asks that
it determine whether H follows from T . The natu-
ral language inference (NLI) task follows a similar
challenge (Bowman et al., 2015; Williams et al.,
2018; Conneau et al., 2018) and involves mak-
ing a 3-way judgment about whether a premise
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entails, contradicts, or is neutral relative to a hy-
pothesis. EWOK asks whether a target sentence
T is plausible given a context C, which might—
but does not have to—indicate an entailment
relationship between the two. Though widely suc-
cessful as a challenge, a large body of subsequent
work has highlighted issues with RTE- and NLI-
style evaluation: language models can often use
heuristics (such as artifacts left behind by human
annotators and lexical statistics) to ‘‘solve’’ the
task without meaningful semantic understanding
or reasoning (Poliak et al., 2018; Liu et al., 2020;
McCoy et al., 2020; Gururangan et al., 2018). We
address this limitation by (1) posing the task as
a minimal pair, where each of two targets is held
static while paired contexts are used to modulate
preferences, rendering it impossible to rely solely
on target plausibility; (2) annotating minimal pair
contrast type to test whether any item design fea-
ture drives model performance; and (3) testing
the relationship between LLM performance and
surface-level item properties, such as item length,
average word frequency, and performance of a
baseline bag-of-words embedding model.

Our approach to dataset design is similar in
spirit to the bAbi framework (Weston et al.,
2016), which used simple synthetic tasks prob-
ing world knowledge and reasoning; however, our
items are both simpler in design (they target in-
dividual concepts and do not require multi-chain
reasoning) and are harder in practice (a minimal
pair, context-dependent design greatly reduces
the availability of response heuristics, a serious
problem in bAbi; Kaushik and Lipton, 2018).

The minimal pair design is common in datasets
inspired by psycholinguistics and cognitive sci-
ence, such as SyntaxGym (Gauthier et al., 2020),
BLiMP (Warstadt et al., 2020), and COMPS
(Misra et al., 2023). In particular, it has previously
been used to test models’ ability to distinguish
plausible and implausible events (Pedinotti et al.,
2021; Kauf et al., 2023), a task that draws heavily
on commonsense knowledge. The popular Wino-
grad Schema Challenge also had a minimal pairs
setup (Levesque et al., 2012), even though that
requirement was relaxed in later versions. We
here extend this approach by employing a mini-
mal pairs-of-pairs design, where both context and
target sentences have a minimal pair counterpart.

Before prompt-based evaluation became com-
monplace, the dominant approach for assessing
language model performance on a minimal pair

has been to calculate each item’s (pseudo) log
probability under the model. This method is
effective at distinguishing grammatical and un-
grammatical sentences (e.g., Warstadt et al.,
2020), plausible and implausible events (Kauf
et al., 2023), and relevant vs. irrelevant object
properties (Misra et al., 2023), while often being
calibrated to human sentence ratings and process-
ing costs (Lipkin et al., 2023; Shain et al., 2024).
Yet raw log probabilities reflect a number of
surface-level properties of the input, such as word
frequency (Kauf et al., 2023) and the number of
possible paraphrases (Holtzman et al., 2021). An
alternative approach, recently made possible with
more powerful LLMs, is to prompt an LLM to
rate item plausibility, either absolute (on a Likert
scale) or relative to the other item in the minimal
pair. This approach can theoretically result in more
task-specific estimates. However, for a range of
linguistic and word prediction tasks, LLMs actu-
ally perform worse with direct prompting than via
implicit log probability assessment (Hu and Levy,
2023), likely because of additional task demands
imposed by the need to decipher instructions in
the prompt (Hu and Frank, 2024). Thus, we re-
port both log probability comparisons and explicit
prompting results.

3 The Framework

We provide a flexible generative synthetic data
pipeline, capable of producing many diverse
datasets, each with unique specifications and
statistics, while preserving metadata and deci-
sion traces. Here, we discuss the design principles
that make it possible to reuse the EWOK frame-
work for systematically generating various world
knowledge datasets. In Section 5, we use this
framework to generate EWOK-CORE-1.0, a sys-
tematic, broad-coverage, context-sensitive world
knowledge dataset containing 4,374 items that
probe 192 concepts (for a full concept list, see
Table A3).

Items Test Concept Knowledge in Context.
Effective use of world knowledge incorporates
both access to a rich set of priors about the
world’s structure and the ability to integrate this
knowledge on-the-fly with information about the
current environment. Thus, our items challenge
models to leverage concepts in context. Each
item consists of two minimal pair contexts (e.g.,
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Domain Templates Concepts Example

Social Interactions 165 16
C: AGENT-1 presents AGENT-2 with [useful/misleading] information.
T: AGENT-1 is [helping/deceiving] AGENT-2.

Social Properties 185 16
C: AGENT-1 [can/cannot] be depended upon.
T: AGENT-1 is [trustworthy/untrustworthy].

Social Relations 785 15
C: AGENT-[1/2] lectures AGENT-[2/1].
T: AGENT-1 is AGENT-2’s [teacher/student].

Physical Interactions 280 20
C: OBJECT-1 is moving [toward/away from] the ground.
T: AGENT-1 [dropped/lifted] OBJECT-1.

Physical Dynamics 75 12
C: The speck on OBJECT-1 [is/is not] rotating.
T: OBJECT-1 is [rolling/sliding].

Physical Relations 435 20
C: OBJECT-1 occupies [more/less] space than OBJECT-2.
T: OBJECT-[1/2] is bigger than OBJECT-[2/1].

Material Dynamics 780 21
C: AGENT-1 sees something that is [fabric/liquid].
T: AGENT-1 can [fold/pour] it.

Material Properties 125 18
C: AGENT-1 [can/cannot] see through OBJECT-1.
T: OBJECT-1 is [transparent/opaque].

Agent Properties 1130 22
C: AGENT-1 likes OBJECT-1 [more/less] than OBJECT-2.
T: AGENT-1 prefers OBJECT-[2/1] to OBJECT-[1/2].

Quantitative Properties 195 18
C: AGENT-1 [needs/does not need] more OBJECT-1.
T: AGENT-1 has [not enough/enough] OBJECT-1.

Spatial Relations 245 14
C: OBJECT-1 is in front of AGENT-1. AGENT-1 turns [left/right].
T: OBJECT-1 is to the [right/left] of AGENT-2.

Table 1: EWOK-CORE-1.0 contains 11 domains, each contributing between 75 and 1130 templates test-
ing between 12 and 22 concepts. Here we include sample templates (pairs of context–target pairs) for
each domain. Each target includes an explicit mention of a concept from that domain (highlighted
in bold).

C1: The piano is in front of Ali. Ali turns left.,
C2: The piano is in front of Ali. Ali turns right)
and two minimal pair target sentences (e.g., T1:
The piano is right of Ali., T2: The piano is left
of Ali.). The two target concepts are juxtaposed
such that in any item, P (T1 | C1) > P (T1 | C2)
and P (T2 | C1) < P (T2 | C2). Thus, base target
probabilities P (T1) and P (T2) cannot serve as
plausibility cues: a model has to rely on context to
establish plausibility.

Concepts Comprise Domains of World Knowl-
edge. EWOK is designed around domains of
general world knowledge, with the current set of
11 domains shown in Table 1. We selected a
range of domains that have been shown to recruit
dedicated cognitive and/or neural machinery in
humans, backed by extensive literature in cog-
nitive science (introduced in Section 1, ‘‘Why
cognition inspired?’’). Domains were contributed

based on past literature during the development of
EWOK by a team of experts in the field (authors
of this paper: professors, post-docs, and grad stu-
dents in cognitive science and neuroscience across
a few institutions). Each domain includes a set of
concepts, also curated by the team. For exam-
ple, the domain social relations includes friend,
enemy, teacher, student, boss, subordinate, and
others. The number of concepts in each domain is
mentioned in Table 1.

Items are Generated from Concept-specific
Templates. Each concept is associated with sev-
eral items that test knowledge of the concept
(often, but not always, by contrasting it with
another concept). Items are generated from tem-
plates, which contain placeholders for specific ob-
jects, agents, and locations. The placeholder value
should not affect the resulting plausibility judg-
ments; thus, a template can be populated with an
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Figure 2: Types of minimal pair contrasts in Context and Target pairs. Examples shown here are for one domain
and concept pair. Templates may be direct, testing concepts explicitly, or indirect, testing concepts implicitly
using likely scenarios (e.g., a student is more likely to talk to a teacher’s colleagues than parents are). Context and
target contrasts reflect how concepts are tested. For instance, antonym contrasts words with opposing meanings,
negation leverages ‘‘not’’, and variable swap exploits relative ordering of entities.

arbitrarily large number of fillers, which enables
generating many carefully controlled items.

Templates Consist of Contrasting Context and
Target Pairs. A template includes 2 targets and
2 contexts. A target is a simple sentence that in-
corporates a concept. A context is a short sequence
of words that can be paired with a target to yield
either a plausible or an implausible combination.
Context and target pairs are designed in such a
way that C1 but not C2 matches T1 and C2 but not
C1 matches T2. The differences between the two
targets or the two contexts result in specific types
of contrasts, shown in Figure 2.

A contrasting target pair is generated using
one of two mechanisms: concept swap, which
contrasts the same target with different concepts
filled in, and variable swap, which swaps two
objects or agents (only possible for certain tar-
gets). For instance, AGENT-1 is AGENT-2’s
teacher can be contrasted with AGENT-1 is
AGENT-2’s student (concept swap) or with
AGENT-2 is AGENT-1’s teacher (vari-
able swap).

A contrasting context pair is generated using
antonyms, negation, or variable swap.

Finally, the templates themselves test concept
knowledge in either direct or indirect way. Di-
rect tests rely on immediate interpretation of a
concept, whereas indirect tests leverage the prob-
abilistic relationship between concept and target
(T1 doesn’t have to be true given C1 but it’s
more likely than T1 given C2).

Templates Enable Flexible Yet Controlled
Generation of Items Using Typed Fillers.
Placeholders in templates (e.g., OBJECT or
AGENT) can be restricted to only allow
fillers of specific types. For example, in
the template {object2:can bounce=True}
bounced off {object1} from below,
{object2:can bounce=True} must be
filled by an object marked with a flag for
can bounce=True, e.g., the ball. These
type restrictions prevent generation of seman-
tically anomalous or incomprehensible sen-
tences (e.g., The blanket bounced off
the table from below). Type restrictions
were specified by the author team during the
template development stage and later validated
via human behavioral ratings (Section 4.4 and
Appendix A.2).
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To create an initial set of object and location
fillers, we generated a set of arbitrary fillers based
on constraints specified in templates (e.g., objects
that can bounce, that have a smell) that was filtered
down to ensure the ‘naturalness’ of the items
that include these fillers. The agent fillers were
selected from the list of culturally diverse high
frequency male, female and non-gendered baby
names. Across domains we list over 500 filler
items across 13 classes with 28 type restrictions.
The full set of fillers is provided in the paper’s
GitHub repository.

When populating the templates with fillers,
users wanting to use the EWOK framework to
construct their own instance of an EWOK-CORE-
1.0-like dataset can specify several parameters,
e.g.: (1) the number of items to generate from
each template; each full set of items is referred
to as a version (corresponding to a random seed);
(2) whether fillers should be held constant across
all items in a version or allowed to vary; (3)
whether to apply transformations to filler restric-
tions at compile-time, for instance, restricting all
agents to take non-Western names via agent->
agent:western=False, or swapping all ob-
jects with nonce-words via object->nonword.
Such flexibility allows for controlled experimen-
tation of the features modulating model perfor-
mance. With these arguments and others easily
accessible from the command line interface, users
are supported to generate many EWOK variations,
and can additionally extend EWOK to add new
domains, concepts, and fillers.

4 Evaluation

Using the EWOK framework, we compiled the
EWOK-CORE-1.0 dataset. To do so, our team (which
includes experts in specific domains of cogni-
tive science) curated a list of 880 templates that
test knowledge of 192 concepts from 11 do-
mains. These templates were then populated with
5 fillers that were randomly sampled from our
initial filler set (described in Section 3), result-
ing in 5 dataset versions. This strategy enables
us to explicitly measure the variability associated
with the random sampling of filler items (which,
in principle, should not affect the results). For
EWOK-CORE-1.0, we chose to hold the set of fillers
constant across all items within each version, al-
though that constraint can be relaxed if needed
(see Appendix A.1).

We evaluated LLM performance on EWOK-
CORE-1.0 using three different approaches: tra-
ditional plausibility estimates via querying the
probability of sentences under the model, LOG-
PROBS, as well as two prompt-based strategies,
LIKERT and CHOICE. The majority of the results
reported use the LOGPROBS evaluation method,
which allows comparing a wide range of base and
finetuned models. As we show, LOGPROBS out-
performs direct prompting even for large and/or
instruction-tuned models.

For the prompt-based evaluations, we collected
data from both LLMs as well as human partic-
ipants using paired identical prompts. Drawing
inspiration from comparative psychology, such an
approach of matched evaluation has been proposed
as a way to support increasingly fair evaluations
of LLMs, allowing for more direct comparison of
performance, consistency, and context-sensitivity
with human participants (Lampinen, 2024).

4.1 Scoring Metrics

For LOGPROBS evaluation, we use token-level LLM
probabilities to calculate logPθ(T | C) as a sum
of conditional log probabilities of each token:∑n

k=1 logPθ(tk | C, t<k), where t is the vector
of tokens composing the target T . For LIKERT,
participants (humans and models) are prompted to
rate the plausibility of the concatenation of each
Ci and Tj pair on a 1–5 scale.2 This is function-
ally similar to the LOGPROBS condition, but ex-
plicitly based on the model’s generative behavior
as opposed to intrinsic to its scoring. For CHOICE,
participants (humans and models) are presented
with C1 and C2, followed by a single target (T1 or
T2), and then prompted to select the context (1 or
2) that better matches the target. This is another
prompting approach that uses the language model
discriminatively with access to both items. For
LIKERT and CHOICE, details about text generation
hyperparameters can be found in A.4 and exact
prompt templates can be found in Appendix A.5.
The metric for correctness of a given item
is the recovery of the designed item structure
that score(T1 | C1) > score(T1 | C2) and
score(T2 | C1) < score(T2 | C2), where
score reflectsPθ for LOGPROBS, the integer rating

2A 1–5 point scale was chosen to distinguish between
degrees of plausibility as opposed to solely absolute direction.
Several items in our dataset were distinguishable through this
increased granularity, e.g., a 1 vs 2 or 4 vs 5 that would not
have been distinguishable otherwise.
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Figure 3: LLM performance across world knowledge domains (evaluated with LOGPROBS). Here and elsewhere, the
dotted line at 0.5 denotes chance accuracy. Each dot reflects performance on a single version of EWOK-CORE-1.0
(see Section 3 ‘‘Templates & Fillers’’ and A.1), with the bar reflecting the mean across the 5 versions. LLM
performance varies drastically by domain and is often substantially worse than human performance. In general,
individual LLMs show similar performance patterns across domains, but these patterns are not always consistent
with the human pattern.

for LIKERT, and correct context index selection for
CHOICE. In all cases, models must correctly iden-
tify both C, T matches to get the full score (1.0
point). Identification of only one match receives
0.5 points. In the case of the LIKERT task, which
has a coarser integer scale, if a model returns the
same rating for both pairs, the model receives 0.5
points. Such a paradigm supports a trivial 50%
baseline for all scenarios. Even a random coin
flip or a deterministic model generating the same
response for each query independent of context
will trivially achieve this baseline.

For prompt-based evaluations (LIKERT and
CHOICE), we used the same prompting setup across
all models to assess them in the same way as
humans; however, unlike humans, models were
additionally provided with 2-shot examples. These
examples did not come from any of our domains
and were solely meant to outline the required
response formatting including one positive and
one negative example. See Appendix A.5 for
more details. Our initial experiments revealed
that supplying these examples substantially im-
proves model performance, providing us with
an opportunity to evaluate their ‘‘best shot’’ at
EWOK-CORE-1.0.

4.2 Models

We evaluated N = 20 transformer language
models, selected to span a few points in the
model design space. Models primarily vary in
size (# of parameters; ranging from 1.3B–70B)
and pre-training diet (both # of tokens and source
of training corpora). While most evaluated LLMs
are dense pre-trained transformers (N = 13),
there are a few one-off comparisons supported
including the presence of supervised fine-tuning
for instructions (N = 4) or chat (N = 2), and
mixture-of-experts (MoE) ensembling (N = 1).
We do not intend to draw conclusions about any of
these design decisions, but rather to expose varia-
tion. Aside from these considerations in exploring
variation, the selection of fine-tuned models was
filtered to those that did not require specific for-
matting via the use of a prompt template. Since we
evaluate LLMs and humans on identical prompts,
it was critical to have complete flexibility in for-
matting. The full set of evaluated LLMs are listed
in Figure 3 as well as in Appendix A.3.

We additionally tested a baseline bag-of-words
model based on word2vec embeddings (Mikolov
et al., 2013). Embeddings for each word in a
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context or a target were summed together to
derive one vector per context/target. The con-
text/target match was determined by a cosine
similarity metric, such that an item is scored cor-
rectly if cos(C1, T1) > cos(C2, T1) (and vice versa
for T2). Word-embedding-based models provide
useful baselines, and there is a long tradition
of work in NLI and related tasks utilizing such
easy-to-understand baselines to assess task dif-
ficulty and the presence of alternative solution
strategies (Naik et al., 2018). Past NLI work has
inadvertently fallen prey to design biases, mak-
ing it easy for models to rely on heuristics, such
as word overlap (McCoy et al., 2020). Addition-
ally, word embeddings can contain rich semantic
information (Grand et al., 2022) that may help
solve the task by assessing semantic relatedness
between words in the context and the target. Us-
ing bag-of-words baselines helps understand how
robust the task is in the face of such heuristics.

4.3 Surface-level Item Properties

To determine the influence of surface-level item
properties on model performance, we tested
whether LLM performance correlates with the
number of words in an item, as well as with
average word frequency in an item. Word fre-
quency was determined using unigram counts
from the Google Ngrams (Michel et al., 2011)
2012 American English corpus.

4.4 Human Data

For independent norming of the items in
EWOK-CORE-1.0, we collected data from human
participants. The task human participants per-
formed was nearly identical to the LIKERT version
of the task for LLMs (in a pilot study, we deter-
mined that human results for LIKERT and CHOICE

show Pearson’s R = 0.96 correlation, and decided
to drop the CHOICE condition for the full data col-
lection; see Appendix A.2 (experimental design)
& Appendix B.1 (results) for pilot details).

Data Collection To obtain reliable ratings
across the full set of EWOK-CORE-1.0 items, we
collected at least 5 responses per item from a total
of N = 1,262 participants (591 female, 579 male,
27 other/unknown; median age 36 years; all US
residents who reported English as their first lan-
guage). Participants were recruited via Prolific

(https://prolific.co), an online study
platform. To control for quality of data, we ex-
cluded 59 participants whose inter-subject Pearson
correlation coefficient (compared with average
ratings on items from other participant who rated
the same items as this subject) was below 0.3.
Each EWOK-CORE-1.0 generated item (correspond-
ing to 5 filler-populated versions; see Section 3,
‘‘Templates & Fillers’’ and Section A.1) was split
into four subparts: (C1, T1), (C1, T2), (C2, T1),
(C2, T2) and presented in a LIKERT setting us-
ing the same prompt as that used for LLMs
(Appendix A.5; adapted to presentation in a web
browser with a free-form text-box for human in-
put). Items were presented so that each participant
only saw one of 5 filler-populated variants and one
of the four possible sub-items (Ci, Tj). Therefore,
participants provided sensibility judgments inde-
pendently of any other subparts of the item, closely
matching the conditions for LLM evaluation. Each
participant rated an average of 57 items (all items
came from a single domain). The resultant average
inter-subject Pearson correlation across all items
was 0.744, where the inter-subject correlation was
calculated per-item based on all the participants
that rated that item.

Aggregation and Evaluation We average rat-
ings for a given Ci-Tj pair across all (typically, 5)
participants who rated the pair. To obtain human
norms, we compare the averaged LIKERT ratings
of subparts, awarding 0.5 point for each half com-
parison, i.e., LIKERT(C1, T1) > LIKERT(C2, T1) and
LIKERT(C2, T2) > LIKERT(C1, T2), similar to eval-
uating LLMs as described in Section 4.1. In case
of a tie in scores for a half-comparison, we award
0 points.

5 Experiments: EWOK-CORE-1.0

EWOK-CORE-1.0 Can be Challenging for LLMs
Although EWOK-CORE-1.0 was not designed to be
a difficult dataset, we found that even large open
models perform well below human baselines: The
best model tested, falcon-40b-instruct, yields a
mean accuracy of 0.80 whereas mean human ac-
curacy is 0.95 (Table A4). As expected, larger
models tend to do better, although it is not a
sole predictor of performance. Instruction tuning
does not consistently increase or decrease LLM
performance under the LOGPROBS metric.
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Model Mean Accuracy

GPT-4 Turbo (2024-04-09) 0.912
Claude 3.5 Sonnet (2024-06-20) 0.911
Qwen2 Instruct (72B) 0.901
Claude 3 Opus (2024-02-29) 0.893
GPT-4o (2024-05-13) 0.886
Llama 3 Instruct (70B) 0.876
GPT-4o mini (2024-07-18) 0.864
Claude 3 Sonnet (2024-02-29) 0.848
Mixtral Instruct (8×22B) 0.842
Mixtral Instruct (8×7B) 0.837
Claude 3 Haiku (2024-03-07) 0.829
Claude 3.5 Haiku (2024-10-22) 0.810
GPT-3.5 Turbo (0125) 0.797
Mistral Instruct v0.3 (7B) 0.772
Llama 3 Instruct (8B) 0.171

Table 2: Many instruction-tuned frontier LLMs
perform well (but not at ceiling) in a binary
choice prompt-based evaluation setting. Prompt-
ing was 2-shot (see Appendix A.5). The values
reported here are averages over LLM performance
on each domain. Note that EWOK-CORE-1.0 was
made publicly available in May 2024, so models
updated/released after that time may have already
been exposed to it.

EWOK-CORE-1.0 was later evaluated on closed
frontier models via HELM (Liang et al., 2023) in
January of 2025. That evaluation was performed
using CHOICE prompting given that LOGPROBS for
closed models are not available. The highest per-
forming closed models yield performance ∼0.91,
which is still below humans (∼ 0.95) but not by
much (see Table 2).

Performance Varies Drastically by Domain
Figure 3 shows model results by domain, from
easiest to hardest (see also Table A5). Social inter-
actions is the easiest for both LLMs (mean=0.86,
best=0.95) and humans (1.0); spatial interactions
is both hardest for LLMs (mean=0.62, best=0.75)
and shows the largest performance gap with hu-
mans (who score highly at 0.96). We conclude that
domains that tap into social knowledge are easier
for LLMs whereas domains that require relational
knowledge about the physical world are hardest.

Overall, domain difficulty is consistent across
LLMs, such that the same domains are predom-
inantly hard or easy for all LLMs. One notable
exception is the heterogeneous performance of
the phi models, with phi-1 consistently among the

worst models, phi-1.5 outperforming all models
and even humans on physical dynamics, and phi-2
ranging from on par with the largest models on
some domains to worse than gpt2-xl on spatial
relations. These results can perhaps be attributed
to their unique training procedure, which focuses
prominently on LLM-generated synthetic data.

LLMs Show Heterogeneous Performance
Across Dataset Versions Our generation
framework is designed to allow easy substitution
of different values for names, objects, and loca-
tions, among other variables. In principle, these
values should not affect the results (T1 still best
matches C1 and not C2). However, models show
somewhat different performance on the 5 different
versions of the dataset (Table A4), with phi-2 and
phi-1.5 showing the largest performance range
(0.07 for both). This heterogeneity indicates that
arbitrary item choices can substantially affect
model performance, such that, in our dataset and
in others, ‘‘1%’’ improvements might not be
truly meaningful because they would not gen-
eralize. Humans show somewhat heterogeneous
performance too (range 0.02), although that het-
erogeneity is driven only by a subset of the do-
mains (Figure 3). One of the strengths of EWOK
is that it allows us to explicitly explore this var-
iation in details of the dataset construction pro-
cess. In most benchmarks, these types of details
in item-level construction variation are not mea-
surable, even though these effects likely exist.

Domain Content, Item Design Features, and
Surface-level Item Features All Affect LLM
Performance It is critically important to test
whether cross-domain performance differences
are indeed driven by domain content or are rather
attributable to other factors. We consider item de-
sign features (direct/indirect context; contrast type
for context sentences; and contrast type for tar-
get sentences) and surface-level features (average
word frequency and sentence length). Figure 4
shows that all these factors affect model perfor-
mance, often in different ways than they affect
humans. The number of words in an item nega-
tively affects LLM but not human performance.
Unexpectedly, we found a negative relationship
between word frequency and both LLM and hu-
man performance; follow-up examination of the
data showed that this effect is driven by the fact
that physical-relations and spatial-relations, the

1254

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/TAC
L.a.38/2557964/tacl.a.38.pdf by guest on 13 O

ctober 2025



Figure 4: Top: LLM and human performance across target contrast (A) context contrast (B) and context type
(C), evaluated with LOGPROBS. For examples of manipulations in A–C, see Figure 2. Dark gray line shows aver-
age model performance. Bottom: correlation between LLM accuracy and surface-level item features: (D) average
item length and (E) average word frequency in the item. Humans are not sensitive or only weakly sensitive to
these features, whereas model performance strongly correlates with them. The (counterintuitive) negative re-
lationship between accuracy and word frequency is driven by the fact that hard domains happen to have high word
frequency and is reversed once domain is controlled for (Table S6).

two hardest domains for LLMs, have the highest
word frequency. To evaluate the relative contri-
butions of these factors to model performance,
we jointly modeled all features using mixed ef-
fects regression. Design features and surface-level
features all contributed to model performance
(Table A6), with word frequency having a sig-
nificant positive effect and the number of words
having a significant negative effect, as expected.
Importantly, domain remained a significant pre-
dictor of performance even when accounting for
other factors. These results indicate that surface-
level factors, such as sentence length and word
frequency, contribute but do not fully explain
model performance.

Finally, the baseline bag-of-words model,
which selects the context with the highest
word2vec cosine similarity to the target, per-
formed much worse than LLMs, indicating that
simple embedding similarity between words in
contexts and targets is insufficient to explain LLM
performance. Of note, however, is that the phi-1
model does poorly on all domains and even worse
than the baseline bag-of-words model. We believe
the overly specific nature of phi-1’s training data
that consists of textbook-like demonstrations of

coding problems and solutions likely makes it un-
able to succeed on EWOK-CORE-1.0. This helps
illustrate that without exposure to a naturalis-
tic text corpus which would contain information
about the world, even a model that is fluent in fol-
lowing English-language instructions is not able
to flexibly reason about the world.

LOGPROBS Yields Higher Accuracy Than
Prompting Evaluating LLMs with LOGPROBS

resulted in above-chance accuracy for almost all
open models (Figure 5). As expected, the gap
between LOGPROBS and prompting was larger for
smaller models (Hu and Frank, 2024). While we
observed this general pattern of LOGPROBS as
the dominant strategy, it is possible that highly
targeted prompt engineering may result in above-
LOGPROBS performance.

Human Ratings Are Usually, But Not Always,
Accurate Finally, we examined discrepan-
cies between human ratings and experimenter-
designed ‘‘ground truth’’ labels. Sometimes, the
discrepancy resulted from specific fillers chang-
ing the plausibility of a C, T pair; for instance
‘‘The cooler is inside the car. Chao cannot see the
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Figure 5: LLM performance assessed with LOGPROBS vs. two prompt-based tasks, LIKERT and CHOICE. Prompting
is 2-shot, and the outputs are constrained to the set of allowed values (1 − 5 for LIKERT, 1 or 2 for CHOICE); this
setup was chosen to maximize model performance. Still, LOGPROBS is a better strategy in nearly all cases. In
prompting tasks, it was common for models to generate the same value, e.g., ‘‘1’’ in response to any item. Our
metric was designed such that even in this scenario, the 50% baseline would remain intact (see Section 3). Look-
ing at LIKERT, without this safeguard and requiring strict inequality, the top performing Meta-LLama-3-70B
model drops to 59%. MPT-7B, which performs comparably with LOGPROBS, drops to 2% (see Table 7).

cooler.’’ may be implausible because the cooler
is a large object and the car has windows, al-
though, for smaller objects and containers without
windows, the scenario is more plausible. Some-
times, humans made mistakes. One such example
is cardinal directions from the spatial relations
domain. The scenario ‘‘The bakery is north of
Chao. Chao turns around. The bakery is south
of Chao.’’ is implausible because cardinal direc-
tions do not depend on the agent’s orientation, and
yet our participants often marked it as plausible.
Spatial cognition is known to be variable across
individuals and cultures (Majid et al., 2004; Pitt
et al., 2022), including preferential reliance on rel-
ative (‘left’/‘right’) over absolute (‘north’/‘south’)
reference frames in Western cultures, which might
explain why our (primarily Western) participants
performed worse on items with absolute reference
frames. Overall, human data collection is a valu-
able source of information on our dataset but it
does not replace ground truth labels.

6 Discussion

We present a systematic, flexible framework that
can be used to test basic world knowledge in
language models. Our goal was to develop a
dataset that: (1) leverages a uniform item format
to probe diverse domains of physical and social
knowledge, (2) presents items that employ spe-

cific concepts (‘‘elements of world knowledge’’)
within these domains, (3) requires integrating in-
formation across sentences such that the same
target sentence is plausible given one context and
implausible given another, and (4) consists of
generic templates that can be used to generate a
large variety of items.

We then presented evaluation results for a set
of openly available models on EWOK-CORE-1.0,
a dataset generated using the EWOK framework.
This dataset is moderately challenging for LLMs,
with performance varying substantially across do-
mains (with social knowledge being the easiest
and physical and spatial knowledge being the
hardest).

We show that LLM-generated relative item
probabilities estimated with LOGPROBS, allow dis-
tinguishing plausible and implausible scenarios
above chance for most models and domains and
that evaluation via prompting underperforms rel-
ative to LOGPROBS even for better-performing
models, in agreement with prior results (Hu and
Frank, 2024; Hu and Levy, 2023; Hu et al., 2024;
Kauf et al., 2024). Thus, we argue that a natural
way to compare models is through the probabilities
they output. This is especially the case for mod-
els before post-training/instruction-tuning, weak
models, or checkpoints, all of which may not
have the capability of following complex instruc-
tions (e.g., multiple choice) but have substantial
knowledge that can be revealed with LOGPROBS.
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We discovered that our dataset has high do-
main distinguishability—some world knowledge
domains are much easier for LLMs than others—
but low model distinguishability—many LLMs
perform comparably across domains. This pattern
indicates that the specifics of the model architec-
ture and training data are less important than the
semantic content being evaluated. Results from all
models consistently show that social knowledge
is easier to learn from text alone than knowledge
about the physical world.

We also see that closed frontier models achieve
high accuracy on EWOK-CORE-1.0. This is not
surprising, as this dataset was not designed as
a challenge benchmark but rather as a compre-
hensive, broad-coverage dataset of core world
knowledge in humans. Thus, the broader frame-
work will have value even when this specific
version of the dataset gets saturated.

The EWOK framework opens up multiple
avenues for future work:

Targeted Experiments The flexibility of our
framework allows for conducting specific ex-
periments using customized sets of fillers. For
instance, one might investigate whether LLMs
perform differently on items that include western
vs. nonwestern names, items that refer to people
by names vs. longer descriptors (‘‘the man in the
black hat’’), or even items featuring nonwords
(like ‘‘florp’’) instead of real object names.

Interpretability Research Knowledge editing
research (e.g., Meng et al., 2022, 2023) has of-
ten focused on encyclopedic knowledge; but what
about knowledge of basic physical and social
concepts? Our controlled minimal pair stimuli
can allow researchers to identify and manipulate
model circuits that might be selectively respon-
sible for knowledge of these specific concepts
across several domains.

From Elements to World Models For a model
to function as a flexible and robust general-
purpose AI system, it needs to be able to con-
struct, maintain, and update internal world models
(Ha and Schmidhuber, 2018; LeCun, 2022) (in
cognitive science, variants of such world mod-
els are also known as mental models or situation
models). The extent to which LLMs possess and
use internal world models is subject to ongoing
investigation (Hao et al., 2023; Yildirim and Paul,
2024; Wong et al., 2023). The EWOK framework

offers an opportunity to combine individual ele-
ments of world knowledge to construct multi-step
scenarios for evaluating world modeling capabil-
ities in LLMs, within and across physical and
social knowledge domains.

Limitations Our dataset is written in En-
glish; LLM performance might be lower on
other languages, especially under-resourced ones.
Adapting the EWOK framework to other languages
might require redesigning the set of concepts and
materials we use, which are currently grounded in
the English lexicon. Thus, a multilingual frame-
work can help more cleanly dissociate linguistic
and conceptual effects on model performance.

Another limitation is that we use the same
prompting setup for all models. With tai-
lored prompt engineering, alternative generation
methods, or chain-of-thought reasoning, LLM
performance could improve.

Finally, due to the synthetic nature of our
dataset, some items may be atypical. We avoid
blatant semantic violations by imposing type re-
strictions on template variables and validating our
gold labels against human ratings, so the finalized
set of items in EWOK-CORE-1.0 are semantically
valid, just perhaps uncommon. There may be
interest in using the EWOK framework to test se-
mantically likely, not just semantically possible
items (e.g., Hu et al., 2025). One way to achieve
this would be to use LLMs to populate templates.
We leave this approach to future work, noting
that LLM-based item generation should be used
with care to avoid confounds that inflate model
performance (e.g., Panickssery et al., 2024a).

Another consequence of template-based gener-
ation is that items thus generated may not reflect
the distributional statistics of natural language,
and thus, log probability scores may not serve as
an ideal linking function between the knowledge
language models possess and the scenarios we test
them on. Methods that explicitly identify ways to
tap into LLMs’ reasoning about scenario likeli-
hood may be necessary (e.g., identifying relevant
directions in activation-space: Panickssery et al.,
2024b). Although we can only explore a limited
set of evaluations in a single paper, the EWOK
framework is evaluation-method-agnostic, and
promises to continue being a useful resource al-
lowing researchers to test for world knowledge in
LLMs using novel methods that may be developed
in the future.
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7 Release Considerations

Our release-related goals are to (a) reduce the
chances of accidental incorporation of EWOK
items into LLM training data and (b) promote
accountability and reporting when such incorpo-
ration is done intentionally. Thus:

• EWOK-CORE-1.0 is released on HuggingFace
Datasets (Lhoest et al., 2021) with gated user
access to prevent scrapers from accessing
it automatically. Users will simply accept
a CC-BY license and accompanying Terms
of Use (ToU) wherein they will agree to
explicitly report any instances when a lan-
guage model was trained on the EWOK-
CORE-1.0 items, and will be granted access
automatically. https://huggingface.co
/datasets/ewok-core/EWoK-core-1.0

• The code for the EWOK item generation
framework is shared in a separate repository
on GitHub, with template files downloadable
as password-protected archives to prevent
automatic scraping. The repository is also
protected with a ToU that requires anyone
training or fine-tuning on any data generated
using EWOK to report that fact. https://
github.com/ewok-core/ewok

• The code required to replicate the results
in this paper, along with human study and
model performance data, is shared as a
separate GitHub repository following the
same protections.https://github.com
/ewok-core/ewok-paper.

8 Conclusion

To evaluate the ability of LLMs to construct robust
world models, we need to test their ability to
reason about the fundamental elements of world
knowledge. The EWOK framework provides a
way to systematically evaluate such knowledge;
highlights that LLMs continue to fall short on
simple scenarios requiring physical, spatial, or
social knowledge; and offers opportunities for
further targeted evaluations of LLMs.
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#!/bin/bash

# first, compile individual

# concepts and corresponding

# context/target chunks into

# templates that can be

# filled into with fillers

python -m ewok.compile \

--compile_templates

# next, fill into templates using

# custom parameters to create a

# combined dataset

for version in {0..4}; do

python -m ewok.compile \

--compile_dataset=true \

--fix_fillers=true \

--num_fillers=1 \

--version="$version" \

--custom_{i}d="ewok-core-1.0"

The full list of concepts used in EWOK-CORE-1.0
templates is provided in Table 3.

A.2 Human Data Collection

We collected human data in two phases: a pilot
study used to validate our task on a single domain
and determine the measurement technique to use
for data collection (CHOICE or LIKERT), and a main
study where we repeated data collection for the
full set of EWOK-CORE-1.0 items. In the pilot
study we determined that human judgments are
measurement-technique-invariant (Ivanova et al.,
2024), so we did not collect CHOICE judgments
on the full set of materials, instead relying on
LIKERT judgments to score items. Results from
both studies are discussed in Appendix B.1.

Pilot Study The pilot study was done on materi-
als from one of the EWOK-CORE-1.0 subdomains—
social relations—using one set of variables to
populate the fillers (not used in the main study).
Participants from the USA were recruited using
Prolific, an online study platform, based on being
self-reported native and fluent English speakers.
We recruited a total of 30 participants across
conditions. Of these, 18 reported identifying as
‘female’, 11 as ‘male’, and 1 preferred not to
answer. Participants were assigned to either the
LIKERT or the CHOICE condition, and saw items in
only one of the two measurement techniques.

Each item in LIKERT was split into four
sub-items: (C1, T1), (C1, T2), (C2, T1), (C2, T2).
Similarly, each CHOICE item was split into two
sub-items: (C{1,2}, T1), (C{1,2}, T2). A total of
16 participants provided LIKERT-scale judgments,
whereas 14 provided CHOICE responses to the
items. Most LIKERT sub-items (Ci, Tj) received at
least 4-5 judgments, with all items receiving at
least 3 judgments. The average no. of ratings per
sub-item were 4. All CHOICE sub-items received
7 judgments per (C{1,2}, Ty) pair. Participants
never saw more than one sub-item of the same
item (i.e., participants couldn’t rate both (C1, T1)
and (C2, T1) in the LIKERT study).

Main Study To obtain reliable ratings across
the full set of EWOK-CORE-1.0 items, we col-
lected at least 5 responses per item from a total of
N=1,262 participants (591 female, 579 male, 27
other/unknown; median age 36; all US residents
who reported English as their first language). De-
tails of the main study are reported in Section 4.4,
therefore not repeated here.

Data Exclusion Some online participants may
respond randomly and therefore need to be ex-
cluded. To evaluate the quality of individual
participants’ responses, we computed Pearson
R between that participant’s responses and an
average of other responses for that domain. Par-
ticipants whose correlations were <0.3 were
excluded.

Validating Gold Dataset Labels using Hu-
man Data We used human data to validate
author-assigned gold labels for items in EWOK-
CORE-1.0. First, we identified all items where the
majority human label did not match the gold la-
bel (e.g., the plausibility of C1–T2 was higher
than C2-T2). Then, we manually inspected those
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Domain Concepts

Social Interactions help, deceive, hinder, cooperate, compete, evade, seek, chase, learn, teach, respect,
insult, flirt, comfort, tease, coerce

Social Properties friendly, hostile, trustworthy, untrustworthy, tolerant, bigoted, boastful, humble, dominant,
submissive, shy, extroverted, introverted, confident, warm, cold

Social Relations friend, stranger, enemy, boss, subordinate, colleague, romantic partner, teacher, student,
landlord, roommate, tenant, parent, sibling, child

Physical Interactions heat, cool, lift, drop, attract, repel, throw, catch, climb on, push, pull, break, fix, collide
with, revolve around, approach, kick, touch, sit on, stand on

Physical Dynamics roll, slide, fall, rise, sink, float, grow, shrink, oscillate, spin, accelerate, slow down

Physical Relations bigger, smaller, occlude, occluded, contain, inside, outside, support, supported, attached,
touching, connected, block, trail, hang, tied, on, under, surround, cover

Material Dynamics fold, ripple, pour, stir, flap, splash, droop, drip, hang, pile, trickle, disperse, tap, compress,
drape, squeeze, break, rip, wrinkle

Material Properties transparent, opaque, smooth, rough, heavy, light, glossy, matte, fragile, sturdy, cold,
warm, soft, hard, elastic, inelastic, bouncy, not bouncy

Agent Properties see, not see, hear, not hear, smell, not smell, taste, not taste, feel, not feel, believe, doubt,
imagine, prefer, have no preference, intend, not intend, make an effort, make no effort,
make more effort, make less effort, choose

Quantitative Properties more, less, fewer, the same, different, a lot of, a little, none, some, all, enough, not
enough, many, few, no, the most, the least, the fewest

Spatial Relations left, right, above, below, north, south, east, west, in front of, behind, close, far, toward,
away

Table 3: All concepts tested in EWOK-CORE-1.0 grouped by domain.

items to determine whether we could trace the
discrepancy to an author error or to an error in
the item generation pipeline. When possible, the
generation pipeline was adjusted to generate the
correct version of the item; alternatively, the faulty
item was excluded from the dataset.

A.3 Evaluated Models
The full set of evaluated models are as follows:
gpt2-xl (Radford et al., 2019), phi-1 (Gunasekar
et al., 2023), phi-1.5, phi-2 (Li et al., 2023),
gemma-2b, gemma-1.1-2b-it, gemma-7b,
gemma-1.1-7b-it (Gemma et al., 2024), mpt-7b,
mpt-7b-chat, mpt-30b, mpt-30b-chat (MosaicML,
2023) falcon-7b, falcon-7b-instruct, falcon-40b,
falcon-40b-instruct (Almazrouei et al., 2023),
mistral-7b-v0.1 (Jiang et al., 2023), mixtral-
8×7b-v0.1 (Jiang et al., 2024), Meta-Llama-3-
8B, and Meta-Llama-3-70B (AI@Meta, 2024).
All models were accessed via HuggingFace trans-
formers (Wolf et al., 2020), and all experiments
were run on a 4×A100 80GB GPU cluster.

A.4 Text Completion Experiments
For the prompting-based evaluations, CHOICE and
LIKERT, we support two different generation op-

tions: free and constrained. For free genera-
tion, the LLM may greedily sample up to 20
tokens, and we match the first occurrence of
a valid response (a numeral between 1–2 or
1–5) with a regular expression. Such a strategy
avoids penalizing completions that begin with
text or white-space, but doesn’t guide the model
to produce a valid response. For constrained gen-
eration, the LLM may greedily sample from a
restricted set of tokens, either 1–2 or 1–5, con-
strained using logit masking (Willard and Louf,
2023). Such a strategy enforces well-structured
responses, but requires a restricted response for-
mat. In addition to variation in generation options,
we support both zero- and few-shot prompting.
In Figure 5, the prompting results we report use
2-shot constrained generation, as it yields the
highest performance among our space of tested
strategies.

A.5 Prompts

For the two prompt-based evaluations, CHOICE

and LIKERT, we include below our exact prompt
templates. The LIKERT prompt was additionally
used verbatim for human data evaluation.
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CHOICE Template:

# INSTRUCTIONS

In this study, you will see

↪→ multiple examples. In each

↪→ example, you will be given

↪→ two contexts and a scenario

↪→ . Your task is to read the

↪→ two contexts and the

↪→ subsequent scenario, and

↪→ pick the context that makes

↪→ more sense considering the

↪→ scenario that follows. The

↪→ contexts will be numbered

↪→ "1" or "2". You must answer

↪→ using "1" or "2" in your

↪→ response.

# TEST EXAMPLE

## Contexts

1. "{context1}"

2. "{context2}"

## Scenario

"{target}"

## Task

Which context makes more sense

↪→ given the scenario? Please

↪→ answer using either "1" or

↪→ "2".

## Response

LIKERT Template:

# INSTRUCTIONS

In this study, you will see

↪→ multiple examples. In each

↪→ example, you will be given

↪→ a scenario. Your task will

↪→ be to read the scenario and

↪→ answer how much it makes

↪→ sense. Your response must

↪→ be on a scale from 1 to 5,

↪→ with 1 meaning "makes no

↪→ sense", and 5 meaning

↪→ "makes perfect sense".

# TEST EXAMPLE

## Scenario

"{context} {target}"

## Task

How much does this scenario make

↪→ sense? Please answer using

↪→ a number from 1 to 5, with

↪→ 1 meaning ‘‘makes no sense’’,

↪→ and 5 meaning ‘‘makes

↪→ perfect sense’’.

## Response

A.6 Mixed Effects Modeling

To evaluate joint effects of domains, item design
factors, and item surface features on LLM perfor-
mance, we entered those predictors into a mixed
effects logistic regression model implemented in
R using lme4. The model formula is: Accuracy

1267

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/TAC
L.a.38/2557964/tacl.a.38.pdf by guest on 13 O

ctober 2025



∼ 0 + Domain + ContextContrast + TargetCon-
trast + ContextType + Frequency + NumWords
+ (1|Model) + (1|Item)

See Section 3 for possible values for Domain,
ContextType, ContextContrast, and targetCon-
trast. Domain effects were estimated relative to
a 0 intercept. ContextType, ContextContrast and
TargetContrast had deviation contrast coding.
Relative word frequency and number of words
per item were computed as (C1 + C2)/2 + T
(for either T1 or T2); these values were z-scored
before being entered as regressors. Model refers
to an LLM being used, and Item refers to each
individual item, i.e. a minimal pair of pairs. The
model was fit on item-level binary accuracy data,
with 1 row per target sentence. The results we re-
port are from model performance using LOGPROBS

evaluation type. See Table 6 for results.

B Results

B.1 Human Study
Pilot Study: Human judgments are invariant
to LIKERT or CHOICE measurement We deter-
mined humans are closely aligned when provid-
ing LIKERT-scale or CHOICE judgments (Figure 6).
LIKERT-scale judgments are less dependent on the
specific set up (making a CHOICE judgment re-
quires a specific framing eliciting a comparison of
two contexts given a target). In order to have data
allowing more flexible comparisons we decided
to stick to LIKERT-scale judgments for the full data
collection in the main study.

Figure 6: Confusion matrix showing agreement be-
tween a direct choice of {C1, C2}|Ti and an indirect
choice based on individual LIKERT ratings {Ci|Ti} >
{Cj |Ti}. In this comparison we marked items as ‘‘no
preference’’ if (1) the Likert scores weren’t at least 1
apart, or (2) the average choice preference wasn’t at
least 0.2 away from the midpoint between two alter-
natives. However, we do not use a ‘‘no preference’’
bucket for the main study.

Full Study See the main text Sections 4.4 & 5
for results about the main study (number of partic-
ipants, exclusions made, inter-subject correlation,
and performance of humans on the task).

B.2 Model Evaluation
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Model Mean LogProbs Accuracy Range

human 0.951 0.942–0.957
word2vec 0.542 0.539–0.547
gpt2 xl 0.655 0.645–0.662
phi 1 0.522 0.517–0.530
phi 1 5 0.727 0.686–0.756
phi 2 0.718 0.696–0.771
gemma 2b 0.678 0.657–0.705
gemma 7b 0.714 0.697–0.734
gemma 1.1 2b 0.654 0.643–0.673
gemma 1.1 7b 0.720 0.708–0.736
mpt 7b 0.733 0.716–0.745
mpt 7b chat 0.751 0.73–0.769
mpt 30b 0.757 0.743–0.786
mpt 30b chat 0.771 0.758–0.777
falcon 7b 0.723 0.713–0.744
falcon 7b instruct 0.717 0.701–0.730
falcon 40b 0.783 0.775–0.789
falcon 40b instruct 0.801 0.790–0.810
Mistral 7B 0.775 0.768–0.783
Mixtral 8×7B 0.784 0.774–0.794
Llama 3 8B 0.746 0.740–0.756
Llama 3 70B 0.775 0.759–0.787

Table 4: Performance on EWOK-CORE-1.0. Range reported across 5 dataset versions.

Domain LLM (average) LLM (best) Human

social interactions 0.859 0.945 1.000
social properties 0.839 0.905 0.997
material dynamics 0.816 0.885 0.911
social relations 0.761 0.856 0.992
quantitative properties 0.725 0.823 0.986
physical dynamics 0.706 0.920 0.833
agent properties 0.683 0.778 0.975
physical interactions 0.672 0.759 0.910
material properties 0.669 0.755 0.921
physical relations 0.627 0.723 0.886
spatial relations 0.615 0.749 0.958

Table 5: LLM and human performance by domain.
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Predictor Type Predictor Effect

domain social interactions 1.91 ***
social properties 1.79 ***
material dynamics 2.23 ***
social relations 1.27 ***
quantitative properties 1.09 ***
physical dynamics 0.88 **
agent properties 0.58 **
physical interactions 0.83 ***
material properties 0.75 **
physical relations 0.38
spatial relations 0.41

context contrast antonym vs. rest 0.09 ***
negation vs. rest 0.1 **
variable swap vs. rest 0.0

target contrast variable vs. concept swap 0.0
context type direct vs. indirect 0.2 ***
surface features word frequency 0.07 ***

number of words −0.04 **

Table 6: Domain, design, and surface level features jointly contribute to LLM performance. *p < .05;
**p < .01; ***p < .001.

Model Mean Likert Acc Range

mpt 7b 0.021 0.018–0.025
mpt 7b chat 0.100 0.089–0.113
mpt 30b 0.310 0.307–0.316
mpt 30b chat 0.307 0.25–0.332
falcon 7b 0.003 0.003–0.003
falcon 7b instruct 0.005 0.004–0.008
falcon 40b 0.216 0.185–0.24
falcon 40b instruct 0.353 0.337–0.368
Mistral 7B 0.396 0.375–0.429
Mixtral 8×7B 0.511 0.471–0.533
Llama 3 8B 0.195 0.145–0.222
Llama 3 70B 0.588 0.576–0.603

Table 7: LLM LIKERT accuracy on EWOK-CORE-1.0 with stricter inequality metric.
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